Decomposition and reformulation of integer linear programming problems
نویسندگان
چکیده
منابع مشابه
Decomposition in Integer Linear Programming
Both cutting plane methods and traditional decomposition methods are procedures that compute a bound on the optimal value of an integer linear program (ILP) by constructing an approximation to the convex hull of feasible solutions. This approximation is obtained by intersecting the polyhedron associated with the continuous relaxation, which has an explicit representation, with an implicitly def...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملReformulation and Decomposition of Integer Programs
We examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover reformulations based on decomposition, such as Lagrangean relaxation, the Dantzig-Wolfe reformulation and the resulting column generation ...
متن کاملImproved Linear Integer Programming Formulations of Nonlinear Integer Problems*
A variety of combinatorial problems (e.g., in capital budgeting, scheduling, allocation) can be expressed as a linear integer programming problem. However, the standard devices for doing this often produce an inordinate number of variables and constraints, putting the problem beyond the practical reach of available integer programming methods. This paper presents new formulation techniques for ...
متن کاملParallel Approximation, and Integer Programming Reformulation
We show that in a knapsack feasibility problem an integral vector p, which is short, and near parallel to the constraint vector gives a branching direction with small integer width. We use this result to analyze two computationally efficient reformulation techniques on low density knapsack problems. Both reformulations have a constraint matrix with columns reduced in the sense of Lenstra, Lenst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: 4OR
سال: 2011
ISSN: 1619-4500,1614-2411
DOI: 10.1007/s10288-011-0178-4